博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
05-树9 Huffman Codes
阅读量:6578 次
发布时间:2019-06-24

本文共 4065 字,大约阅读时间需要 13 分钟。

05-树9 Huffman Codes(30 分)

In 1953, David A. Huffman published his paper “A Method for the Construction of Minimum-Redundancy Codes”, and hence printed his name in the history of computer science. As a professor who gives the final exam problem on Huffman codes, I am encountering a big problem: the Huffman codes are NOT unique. For example, given a string “aaaxuaxz”, we can observe that the frequencies of the characters ‘a’, ‘x’, ‘u’ and ‘z’ are 4, 2, 1 and 1, respectively. We may either encode the symbols as {‘a’=0, ‘x’=10, ‘u’=110, ‘z’=111}, or in another way as {‘a’=1, ‘x’=01, ‘u’=001, ‘z’=000}, both compress the string into 14 bits. Another set of code can be given as {‘a’=0, ‘x’=11, ‘u’=100, ‘z’=101}, but {‘a’=0, ‘x’=01, ‘u’=011, ‘z’=001} is NOT correct since “aaaxuaxz” and “aazuaxax” can both be decoded from the code 00001011001001. The students are submitting all kinds of codes, and I need a computer program to help me determine which ones are correct and which ones are not.

Input Specification:

Each input file contains one test case. For each case, the first line gives an integer N (2≤N≤63), then followed by a line that contains all the N distinct characters and their frequencies in the following format:

c[1] f[1] c[2] f[2] … c[N] f[N]

where c[i] is a character chosen from {‘0’ - ‘9’, ‘a’ - ‘z’, ‘A’ - ‘Z’, ‘_’}, and f[i] is the frequency of c[i] and is an integer no more than 1000. The next line gives a positive integer M (≤1000), then followed by M student submissions. Each student submission consists of N lines, each in the format:

c[i] code[i]

where c[i] is the i-th character and code[i] is an non-empty string of no more than 63 ‘0’s and ‘1’s.

Output Specification:

For each test case, print in each line either “Yes” if the student’s submission is correct, or “No” if not.

Note: The optimal solution is not necessarily generated by Huffman algorithm. Any prefix code with code length being optimal is considered correct.

Sample Input:

7

A 1 B 1 C 1 D 3 E 3 F 6 G 6
4
A 00000
B 00001
C 0001
D 001
E 01
F 10
G 11
A 01010
B 01011
C 0100
D 011
E 10
F 11
G 00
A 000
B 001
C 010
D 011
E 100
F 101
G 110
A 00000
B 00001
C 0001
D 001
E 00
F 10
G 11
Sample Output:

Yes

Yes
No
No

#include 
#include
using namespace std;const int minData=-1;struct HuffmanTree{ int f; HuffmanTree *left=NULL; HuffmanTree *right=NULL;};struct minHeap{ HuffmanTree *data; int Size=0;};minHeap* Create(int maxSize){ minHeap* H=new minHeap; H->data=new HuffmanTree[maxSize+1]; H->data[0].f=minData; return H;}void Insert(HuffmanTree* x,minHeap* H){ int i=++H->Size; for(;H->data[i/2].f>x->f;i/=2){ H->data[i]=H->data[i/2]; } H->data[i]=*x;}HuffmanTree* Delete(minHeap *H){ int parent,child; HuffmanTree temp=H->data[H->Size--]; HuffmanTree *minItem=new HuffmanTree; *minItem=H->data[1]; for(parent=1;parent*2<=H->Size;parent=child){ child=parent*2; if(child+1<=H->Size && H->data[child].f>H->data[child+1].f){ child++; } if(temp.f<=H->data[child].f) break; else H->data[parent]=H->data[child]; } H->data[parent]=temp; return minItem;}HuffmanTree* BuildHuffmanTree(int m,minHeap* H){ HuffmanTree* T; for(int i=0;i
left=Delete(H); T->right=Delete(H); T->f=T->left->f+T->right->f; Insert(T,H); } return Delete(H);}int wpl(HuffmanTree* T,int h){ if(!T->left && !T->right) return h*(T->f); else return wpl(T->left,h+1) + wpl(T->right,h+1);}void check(int n,int freq[],HuffmanTree* T){ int i,j,is=1,sum=0; char c; string s[n]; for(i=0;i
>c>>s[i]; if(s[i].size()>n-1) break; for(j=0;j
>c>>s[i]; if(is) cout<<"Yes"<
>m; int freq[m]; minHeap* H=Create(m); HuffmanTree* T; for(int i=0;i
>c>>freq[i]; HuffmanTree* node=new HuffmanTree; node->f=freq[i]; Insert(node,H); } T=BuildHuffmanTree(m,H); cin>>n; for(int i=0;i

转载于:https://www.cnblogs.com/JingwangLi/p/10202823.html

你可能感兴趣的文章
xhost: unable to open display
查看>>
Nat--网络地址转换—静态篇
查看>>
使用haproxy-实现七层负载均衡
查看>>
IT民工谈IT管理和AD设计-2
查看>>
我的友情链接
查看>>
表驱动法
查看>>
什么是企业内训
查看>>
firefox无法显示java插件plugin
查看>>
Windows Phone 7 自定义弹出窗口
查看>>
H3C设备之OSPF DR选举
查看>>
java reflection singleton factorypattern
查看>>
View控件Edittext属性
查看>>
List grantee right in oracle
查看>>
骨牌铺方格 ——解题报告
查看>>
Training 的第一天
查看>>
Activity生命周期
查看>>
通过VBS编写自动输入账号和密码、自动登录程序的脚本
查看>>
MTK APSoC SDK MT7621编译固件的快速开始
查看>>
【Hibernate】Hibernate.cfg.xml配置文件详解
查看>>
关于KMP算法的学习
查看>>